Unleashing the Potential of Data-Driven Networking
نویسندگان
چکیده
The last few years have witnessed the coming of age of data-driven paradigm in various aspects of computing (partly) empowered by advances in distributed system research (cloud computing, MapReduce, etc). In this paper, we observe that the benefits can flow the opposite direction: the design and management of networked systems can be improved by data-driven paradigm. To this end, we present DDN, a new design framework for network protocols based on data-driven paradigm. We argue that DDN has the potential to significantly achieve better performance through harnessing more data than one single flow. Furthermore, we systematize existing instantiations of DDN by creating a unified framework for DDN, and use the framework to shed light on the common challenges and reusable design principles. We believe that by systematizing this paradigm as a broader community, we can unleash the unharnessed potential of DDN.
منابع مشابه
A comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملPrediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province
The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملDevelopment of an Improved Fuzzy Approach to Model Potential Sites for Groundwater Artificial Recharge
Delineation of potential sites for groundwater artificial recharge is an important and challenging task. The purpose of this research is to develop a new data-driven fuzzy approach to model potential sites for groundwater artificial recharge. To achieve this end, the efficient criteria of a proper site for groundwater artificial recharge were first recognized and presented as a conceptual model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017